Amazing Science -1

Amazing Science (Part 1)
(Saints and Science)
By Swami Sada Shiva Tirtha

Amazing Science, Cosmology and Psychology, Medicine (Ayurveda),
Aviation, Surgery, Paediatrics, Gynaecology, Anatomy, Physiology, Pharmacology, Embryology, Blood Circulation, Rhinoplasty, Amputation, Caesarian and Cranial surgeries, Anesthesia, Antibiotic herbs, Atomic theory, Chemistry Alchemical Metals, Astronomy and Mathematics, Geography, Constellation science, Botany and Animal science, Algebra, Arithmetic and Geometry, Planetary positions, Eclipses, Cosmography, and mathematical techniques, Force of Gravity, The Decimal, Metallurgy.

By Swami Sada Shiva Tirtha

When we look at scientists who are credited with the most important ideas of our time we find mainly Greeks, Europeans, Americans listed. Yet western history seems to have been arbitrarily begun during the Greek era. In fact, when we extend the boundaries of history to view the longer span of history we find some amazing developments predating "modern" history originating in India more than 5,000 years ago.

The ancient thinkers of India were not only scientists and mathematicians, but also deeply religious, esteemed saints of their time. While it may surprise some to think of religious sages as mundane scientists, the Indian view is that religion (universal) and science are but two sides of the same coin - in short…semantics. Whether one calls a natural phenomena wind or the wind god - Vayu - one is speaking of the same thing.

Yet it seems that having a spiritual foundation not only brought out important discoveries still in use today, but these discoveries also were helpful without causing harm or destruction.

In fact this article will cite the origins of some amazing and here-to-for mis-credited discoveries as coming from India. Some examples include so-called Arabic numerals, the concept of the zero, so-called Pythagorean theory, surgery and more. It may seem astonishing, but the ancient texts are there to show the thinking and writing of these great Indian thinkers.

Why is India not credited? It seems that in the West we have a condescending, Euro- or Greco-centric view that civilizations older than Greece were uncivilized barbarians. This notion was further melded into our collective psyche through Hollywood's portrayal of ancient cultures. One only has to look at old Tarzan movies to see ancient tribes shown as barbaric, superstitious idol worshipping people. Tarzan himself was shown to be a non-speaking animal-like person. In fact, in the original books, Tarzan was a well-educated and highly eloquent speaker.

Chauvinistic misrepresentation exists even today. Nearly every book written on the history of mathematics is equally biased. The one bright spot is the Crest of the Peacock. Even this year, during the recent Hindu festival, the Kumbha Mela - the largest human gathering in history (70 million people) the modern-day press mainly reported on the most negative aspects of the event.

It was not credited as the largest gathering, nor was it pointed out that for 1 week, the area was the worlds largest city (larger population than London, Tehran, Rio, Paris, Chicago, Beijing, Hyderabad and Johannesburg put together). Virtually no one spoke of the sacredness of the event, the hardships people endured for this holy event. Further, the whole event went off without a hitch - adequate food, water, electricity - a marvel by any standards. There were more than 13,000 tons of flour, 7,800 tons of rice, 20,000 public toilets, 12 hospitals, 35 electric power centers, 20,000 police, 1,090 fire hydrants and much more.

Rarely was an ardent devotee interviewed or photographed. Instead reporters and cameramen only focused on the minority elements - naked sadhus smoking ganja (marijuana) and implying prayers were to some lesser god. But it sells newspapers and TV news. In truth, the Indian media showed an equal amount of bias and lack of cultural pride. In short the media still portrays India in a deeply condescending manner.

But I digress. The point is that westerners have been brought up for decades incorrectly viewing ancient civilizations as intellectually and culturally inferior to modern man. So it is no surprise to be surprised in learning some of the greatest discoveries not only came from India, but from ancient India. It shakes the very foundations of prejudicial beliefs. Here are but a few examples of India's enlightened thinkers.

Amazing Science
(Saints and Science)
By Swami Sada Shiva Tirtha

Cosmology & psychology

According to India's ancient texts, around 3000 BCE sage Kapil founded both cosmology and psychology. He shed light on the Soul, the subtle elements of matter and creation. His main idea was that essential nature (prakrti) comes from the eternal (purusha) to develop all of creation. No deeper a view of the cosmos has ever been developed. Further, his philosophy of Sankhya philosophy also covered the secret levels of the psyche, including mind, intellect and ego, and how they relate to the Soul or Atma.

Medicine (Ayurveda), Aviation

Around 800 BCE Sage Bharadwaj, was both the father of modern medicine, teaching Ayurveda, and also the developer of aviation technology. He wrote the Yantra Sarvasva, which covers astonishing discoveries in aviation and space sciences, and flying machines - well before Leonardo DaVinchi's time. Some of his flying machines were reported to fly around the earth, from the earth to other planets, and between universes. His designs and descriptions have left a huge impression on modern-day aviation engineers. He also discussed how to make these flying machines invisible by using sun and wind force. There are much more fascinating insights discovered by sage Bharadwaj.

Medicine, Surgery, paediatrics, gynaecology. anatomy,
physiology, pharmacology, embryology, blood circulation

Around this era and through 400 BCE many great developments occurred. In the field of medicine (Ayurveda), sage Divodasa Dhanwantari developed the school of surgery; Rishi Kashyap developed the specialized fields of paediatrics and gynaecology. Lord Atreya, author of the one of the main Ayurvedic texts, the Charak Samhita, classified the principles of anatomy, physiology, pharmacology, embryology, blood circulation and more. He discussed how to heal thousands of diseases, many of which modern science still has no answer. Along with herbs, diet and lifestyle, Atreya showed a correlation between mind, body, spirit and ethics. He outlined a charter of ethics centuries before the Hippocratic oath.
Rhinoplasty, amputation, caesarean and
cranial surgeries, anesthesia, antibiotic herbs

While Lord Atreya is recognized for his contribution to medicine, sage Sushrut is known as the "Father of surgery". Even modern science recognizes India as the first country to develop and use rhinoplasty (developed by Sushrut). He also practiced amputation, caesarean and cranial surgeries, and developed 125 surgical instruments including scalpels, lancets, and needles.

Lord Atreya - author of Charak Samhita. Circa 8th - 6th century
BCE. Perhaps the most referred to Rishi/physician today The Charak Samhita was the first compilation of all aspects of ayurvedic medicine including diagnoses, cures, anatomy, embryology, pharmacology, and blood circulation (excluding surgery).

He wrote about causes and cures for diabetes, TB, and heart diseases. At that time, European medicine had no idea of these ideas. In fact, even today many of these disease causes and cures are still unknown to modern allopathic medicine.

Other unique quality of Ayurveda is that it uncovers and cures
the root cause of illness, it is safe, gentle and inexpensive, it
sees 6 stages of disease development (where modern medicine only sees the last two stages), it treats people in a personalized manner according to their dosha or constitution and not in any generic manner.

Further, Ayurveda being the science of 'life', Atrea was quick to emphasize, proper nutrition according to dosha, and perhaps
above all else, that there was a mind/body/soul relationship
and that the root cause of all diseases and the best medicine
for all conditions is spiritual and ethical life.

Rishi Sushrut is known as the father of surgery & author of
Sushrut Samhita. Circa 5 - 4th century BCE. He is credited
with performing the world's first rhinoplasty, using anesthesia
and plastic surgery. He used surgical instruments - many of
them look similar to instruments used today; and discussed
more than 300 types of surgical operations. One of the
Ayurvedic surgical practices being used today in India involves dipping sutures into antibiotic herbs so when sewed into the person, the scar heals quicker and prevent infection. The modern surgical world owes a great debt to this great surgical sage.

[Note; The following institution offers more
knowledge on the subject of Ayurveda]

Ayurveda Holistic Center & School of Ayurveda
2-Year Certification & Ph.D. programs
Read the Ayurveda Encyclopaedia

Atomic theory
Sage Kanad (circa 600 BCE) is recognized as the founder of atomic theory, and classified all the objects of creation into nine elements (earth, water, light or fire, wind, ether, time, space, mind and soul). He stated that every object in creation is made of atoms that in turn connect with each other to form molecules nearly 2,500 years before John Dalton. Further, Kanad described the dimension and motion of atoms, and the chemical reaction with one another. The eminent historian, T.N. Colebrook said, "Compared to scientists of Europe, Kanad and other Indian scientists were the global masters in this field."

Chemistry alchemical metals

In the field of chemistry alchemical metals were developed for medicinal uses by sage Nagarjuna. He wrote many famous books including Ras Ratnakar, which is still used in India's Ayurvedic colleges today. By carefully burning metals like iron, tin, copper, etc. into ash, removing the toxic elements, these metals produce quick and profound healing in the most difficult diseases.
Astronomy and mathematics
Sage Aryabhatt (b. 476 CE) wrote texts on astronomy and mathematics. He formulated the process of calculating the motion of planets and the time of eclipses. Aryabhatt was the first to proclaim the earth was round, rotating on an axis, orbiting the sun and suspended in space. This was around 1,000 years before Copernicus. He was a geometry genius credited with calculating pi to four decimal places, developing the trigonomic sine table and the area of a triangle. Perhaps his most important contribution was the concept of the zero. Details are found in Shulva sutra. Other sages of mathematics include Baudhayana, Katyayana, and Apastamba.
Astronomy, geography, constellation
science, botany and animal science.

Varahamihr (499 - 587 CE) was another eminent astronomer. In his book, Panschsiddhant, he noted that the moon and planets shine due to the sun. Many of his other contributions captured in his books Bruhad Samhita and Bruhad Jatak, were in the fields of geography, constellation science, botany and animal science. For example he presented cures for various diseases of plants and trees.

Knowledge of botany (Vrksh-Ayurveda) dates back more than 5,000 years, discussed in India's Rig Veda. Sage Parashara (100 BCE) is called the "father of botany" because he classified flowering plants into various families, nearly 2,000 years before Lannaeus (the modern father of taxonomy). Parashara described plant cells - the outer and inner walls, sap color-matter and something not visible to the eye - anvasva. Nearly 2,000 years -later Robert Hooke, using a microscope described the outer and inner wall and sap color-matter.

Algebra, arithmetic and geometry, planetary positions, eclipses,
cosmography, and mathematical techniques. force of gravity

In the field of mathematics, Bhaskaracharya II (1114 - 1183 CE) contributed to the fields of algebra, arithmetic and geometry. Two of his most well known books are Lilavati and Bijaganita, which are translated in several languages of the world. In his book, Siddhant Shiromani, he expounds on planetary positions, eclipses, cosmography, and mathematical techniques. Another of his books, Surya Siddhant discusses the force of gravity, 500 years before Sir Isaac Newton. Sage Sridharacharya developed the quadratic equation around 991 CE.

The Decimal
Ancient India invented the decimal scale using base 10. They number-names to denote numbers. In the 9th century CE, an Arab mathematician, Al-Khwarizmi, learned Sanskrit and wrote a book explaining the Hindu system of numeration. In the 12th century CE
the book was translated into Latin. The British used this numerical system and credited the Arabs - mislabelling it 'Arabic numerals'. "We owe a lot to the Indians, who taught us how to count, without which no worthwhile scientific discovery could have been made." - Albert Einstein.

India was the world-leader in Metallurgy for more than 5,000 years. Gold jewellery is available from 3,000 BCE. Brass and bronze pieces are dated back to 1,300 BCE. Extraction of zinc from ore by distillation was used in India as early as 400 BCE while European William Campion patented the process some 2,000 years later. Copper statues can be dated back to 500 CE. There is an iron pillar in Delhi dating back to 400 CE that shows no sign of rust or decay.

There are two unique aspects to India's ancient scientists. First their discoveries are in use today as some of the most important aspects of their field; and are validated by modern technological machines. Second, their discoveries brought peace and prosperity rather than the harm and destruction of many of our modern discoveries.

Due to their intense spiritual life, they developed such power of discrimination (vivek). Spirituality gives helpful direction and science brings speed. With a core of spirituality, modern scientists' discoveries can quickly bring only helpful ideas to help humanity. While Einstein is credited with the idea that one can travel faster than the speed of light, it was written about centuries before in the ancient Vedic literature. Perhaps it was Einstein's association with the famed Indian physicist, Bose that led to his introduction to the views about the speed of light. Through deep meditation and reading the ancient Vedic texts, who knows what our modern-day scientists will discover?

There are two points here, the first is that India should be proud of its amazing achievements and be properly credited, and second is that India leaves a blueprint, compass and map for how to develop safe and helpful discoveries for the future betterment of mankind.

Ayurveda Encyclopedia
Swami Sadashiva Tirtha. AHC Press 1988

Vedic Mathematics
Jagadguru Shankaracharya Swami Sri Bharati Krsna
Tirthaji Maharaj. Motilal Banarsidass 1988

The Crest of the Peacock
George G. Joseph. I.B. Taurist Co, London 1991

Indian Astronomy & Mathematics
O.P. Jaggi. Atma Ram & Sons, Delhi 1986

Surya Siddhanta
Reb. E Burgess translator. Swaran Press. Delhi 1977

Amazing Science (Part 2)
From The Mahabharata, Santi Parva Section XV
Bacteria -Viruses, Physiology, Science of Speech

Bacteria- Viruses
This mobile and immobile universe is food for living creatures.
This has been ordained by the gods. The very ascetics cannot support their lives without killing creatures. In water, on earth, and fruits, there are innumerable creatures. It is not true that one does not slaughter them. What higher duty is there than supporting one's life? There are many creatures that are so minute that their existence can only be inferred. With the falling of the the eyelids alone, they are destroyed.

From The Mahabharata, Santi Parva, Section CCCXXI
Reproduced from Page 'Empty Chamber'

The constituent elements of the body, which serve diverse
functions in the general economy, undergo change every
moment in every creature. Those changes, however, are so
minute that they cannot be noticed. The birth of particles,
and their death, in each successive condition, cannot be
marked, O king, even as one cannot mark the changes in
the flame of a burning lamp. When such is the state of the
bodies of all creatures, - that is when that which is called
the body is changing incessantly even like the rapid
locomotion of a steed of good mettle- who then has come
whence or not whence, or whose is it or whose is it not,
or whence does it not arise? What connection does there
exist between creatures and their own bodies?

[Note: The fact of continual change of particles in the body
was well known to the Hindu sages. This discovery is not new
of modern physiology. Elsewhere it has been shown that
Harvey’s great discovery about the circulation of the blood
was not unknown to the Rishis.

The instance mentioned for illustrating the change of corporal particles is certainly a very apt and happy one. The flame of a burning lamp, though perfectly steady (as in a breezeless spot), is really the result of the successive combustion of particles of oil and the successive extinguishments of such combustion.]
Science of Speech
From The Mahabharata, Santi Parva, Section CCCXXI

Sulabha said: O king, speech ought always to be free from
the nine verbal faults and the nine faults of judgment. It should
also, while setting forth the meaning with perspicuity, be
possessed of the eighteen well-known merits.

From The Chhandogya Upanishad
XVIII. vii. 23-26

Narada approached Sanatkumara and said: “Sir, teach me.”

“Come and tell me what you know,” he replied, “and then I will teach you what is beyond that.”

“Sir, I know the Rig-Veda, the Yajur-Veda, the Sama-Veda and Atharvan the fourth; and also the Itihasa-Purana as the fifth. I know the Veda of the Vedas (viz., grammar), the rules for the propitiation of the Pitris (ancestors), the science of numbers, the science of portents, the science of time, the science of logic, ethics and politics, the science of the gods, the science of scriptural studies, the science of the elemental science, the science of weapons, the science of the stars, the science of snake-charming and the fine arts – all these, Sir, I know,”

“But, Sir, with all these I am only a knower of words, not a knower of the Self. I have heard from holy men like you that he who knows the Self crosses over sorrow. I am in sorrow. Do, Sir, help me to cross over to the other side of sorrow.”

To him he then said: “Verily, whatever you have learned here is only a name.

“That which is Infinite – that, indeed, is happiness. There is no happiness in anything that is finite. The Infinite alone is
happiness. But this Infinite one must desire to understand.”

Amazing Science (Part 3)
The following topics are researched and the text written by
Sadhu Brahmaviharidas
AARSH - Akshardham Centre for Applied Research in Social Harmony

Taxila University (The world's first university), Mathematics, Zero, the most
powerful tool, Geometry, The value of Pi in India, Pythagorean Theorem or
Baudhayana Theorem? Raising 10 to the power of 53, Astronomy, The
Law of Gravity- 1200 years before Newton, Measurement of Time, Plastic
surgery in India 2600 years old, 125 types of surgical instruments, 300
different operations, India's contributions acknowledged by historians and

The Ruins of Nalanda University

University (The world’s first university)
Takshashila (Taxila)

Around 2700 years ago, as early as 700 BCE there existed
a giant University at Takshashila, located in the northwest
region of India.

Not only Indians but also students from as far as Babylonia,
Greece, Syria, Arabia and China came to study.

68 different streams of knowledge were on the syllabus.
Experienced masters taught a wide range of subjects.

Vedas, Language, Grammar, Philosophy, Medicine, Surgery, Archery, Politics, Warfare, Astronomy, Accounts, commerce, Futurology, Documentation, Occult, Music, Dance, The art of discovering hidden treasures, etc.
The minimum entrance age was 16 and there were 10,500

The panel of Masters included renowned names like Kautilya,
Panini, Jivak and Vishnu Sharma.

Taxila University
Takshashila, (later corrupted as Taxila),one of the topmost centers of
education at that time in India became Chanakya’s breeding ground of
acquiring knowledge in the practical and theoretical aspect. The teachers were highly knowledgeable who used to teach sons of kings. It is said that a certain teacher had 101 students and all of them were princes! The niversity at Taxila was well versed in teaching the subjects using the best of practical knowledge acquired by the teachers. The age of entering the university was sixteen. The branches of studies most sought after in around India ranged from law, medicine, warfare and other indigenous forms of learning. The four Vedas, archery, hunting, elephant-lore and 18 arts were taught at the university of Taxila. So prominent was the place where Chanakya received his education that it goes to show the making of the genius. The very requirements of admission filtered out the outlawed and people with lesser credentials.

At a time when the Dark Ages were looming large, the existence of a
university of Taxila’s grandeur really makes India stand apart way ahead
of the European countries who struggled with ignorance and total information blackout. For the Indian subcontinent Taxila stood as a light house of higher knowledge and pride of India. In the present day world, Taxila is situated in Pakistan at a place called Rawalpindi. The university accommodated more than 10,000 students at a time. The university offered courses spanning a period of more than eight years. The students were admitted after graduating from their own countries. Aspiring students opted for elective subjects going for in depth studies in specialized branches of learning. After graduating from the university, the students are recognized as the best scholars in the subcontinent. It became a cultural heritage as time passed. Taxila was the junction where people of different origins mingled with each other and exchanged knowledge of their countries.

The university was famous as "Taxila" university, named after the city
where it was situated. The king and rich people of the region used to donate lavishly for the development of the university. In the religious scriptures also, Taxila is mentioned as the place where the king of snakes, Vasuki selected Taxila for the dissemination of knowledge on earth.

Here it would be essential to mention briefly the range of subjects taught in the university of Taxila. (1) Science, (2) Philosophy, (3) Ayurveda, (4) Grammar of various languages, (5) Mathematics, (6) Economics, (7) Astrology, (8) Geography, (9) Astronomy, (10) Surgical science, (11) Agricultural sciences, (12) Archery and Ancient and Modern Sciences.
The university also used to conduct researches on various subjects.
Related articles
Chanakya - Nitishastra

See also Appendix to this page
The Ruins of Nalanda University, Bihar, India
A Buddhist University, 5th Century

Zero –The Most Powerful Tool
India invented the Zero, without which there would be no binary system. No computers! Counting would be clumsy and
cumbersome! The earliest recorded date, an inscription of Zero on Sankheda Copper Plate was found in Gujarat, India (585-586 CE). In Brahma-Phuta-Siddhanta of Brahmagupta (7th century CE), the Zero is lucidly explained and was rendered into Arabic books around 770 CE. From these it was carried to Europe in the 8th century. However, the concept of Zero is referred to as Shunya in the early Sanskrit texts of the 4th century BCE and clearly explained in Pingala’s Sutra of the 2nd century.

Invention of Geometry
The word Geometry seems to have emerged from the Indian word ‘Gyaamiti’ which means measuring the Earth (land). And the word Trigonometry is similar to ‘Trikonamiti’ meaning measuring triangular forms. Euclid is credited with the invention of Geometry in 300 BCE while the concept of Geometry in India emerged in 1000 BCE, from the practice of making fire altars in square and rectangular shapes. The treatise of Surya Siddhanta (4th century CE) describes amazing details of Trigonometry, which were introduced to Europe 1200 years later in the 16th century by Briggs.
The Value of PI in India
The ratio of the circumference and the diameter of a circle are known as Pi, which gives its value as 3,1428571. The old Sanskrit text Baudhayana Shulba Sutra of the 6th century BCE mentions this ratio as approximately equal to 3. Aryabhatta in 499, CE worked the value of Pi to the fourth decimal place as 3.1416. Centuries later, in 825 CE Arab mathematician Mohammed Ibna Musa says that "This value has been given by the Hindus (Indians)".
Pythagorean Theorem or Baudhayana Theorem?
The so-called Pythagoras Theorem – the square of the hypotenuse of a right-angled triangle equals the sum of the square of the two sides – was worked out earlier in India by Baudhayana in Baudhayana Sulba Sutra. He describes: "The area produced by the diagonal of a rectangle is equal to the sum of the area produced by it on two sides."
[Note: Greek writers attributed the theorem of Euclid to Pythagoras]
The Decimal

100BCE the Decimal system flourished in India
"It was India that gave us the ingenious method of expressing all numbers by means of ten symbols (Decimal System)….a profound and important idea which escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity."
-La Place
Raising 10 to the Power of 53
The highest prefix used for raising 10 to a power in today’s maths is ‘D’ for 10 to a power of 30 (from Greek Deca). While, as early as 100 BCE Indian Mathematicians had exact names for figures upto 10 to the power of 53.
ekam =1
dashakam =10
shatam =100 (10 to the power of 10)
sahasram =1000 (10 power of 3)
dashasahasram =10000 (10 power of 4)
lakshaha =100000 (10 power of 5)
dashalakshaha =1000000 (10 power of 6)
kotihi =10000000 (10 power of 7)
ayutam =1000000000 (10 power of 9)
niyutam = (10 power of 11)
kankaram = (10 power of 13)
vivaram = (10 power of 15)
paraardhaha = (10 power of 17)
nivahaaha = (10 power of 19)
utsangaha = (10 power of 21)
bahulam = (10 power of 23)
naagbaalaha = (10 power of 25)
titilambam = (10 power of 27)

pragnaptihi = (10 power of 29)
hetuheelam = (10 power of 31)
karahuhu = (10 power of 33)
hetvindreeyam = (10 power of 35)
samaapta lambhaha = (10 power of 37)
gananaagatihi) = (10 power of 39)
niravadyam = (10 power of 41)
mudraabaalam = (10 power of 43)
sarvabaalam = (10 power of 45)
vishamagnagatihi = (10 power of 47)
sarvagnaha = (10 power of 49)
vibhutangamaa = (10 power of 51)
tallaakshanam = (10 power of 53)

(In Anuyogdwaar Sutra written in 100 BCE one
numeral is raised as high as 10 to the power of 140).

Indian astronomers have been
mapping the skies for 3500 years.

1000 Years Before Copernicus
Copernicus published his theory of the revolution of the Earth in 1543. A thousand years before him, Aryabhatta in 5th century (400-500 CE) stated that the Earth revolves around the sun, "just as a person travelling in a boat feels that the trees on the bank are moving, people on earth feel that the sun is moving". In his treatise Aryabhatteeam, he clearly states that our earth is round, it rotates on its axis, orbits the sun and is suspended in space and explains that lunar and solar eclipses occur by the interplay of the sun, the moon and the earth.
The Law of Gravity - 1200 Years Before Newton
The Law of Gravity was known to the ancient Indian astronomer Bhaskaracharya. In his Surya Siddhanta, he notes:
"Objects fall on earth due to a force of attraction by the earth. therefore, the earth, the planets, constellations, the moon and the sun are held in orbit due to this attraction".
It was not until the late 17th century in 1687, 1200 years later, that Sir Isaac Newton rediscovered the Law of Gravity.

Measurement of Time

In Surya Siddhanta, Bhaskaracharya calculates the time taken for the earth to orbit the sun to 9 decimal places.
Bhaskaracharya = 365.258756484 days.
Modern accepted measurement = 365.2596 days.
Between Bhaskaracharya’s ancient measurement 1500 years ago and the modern measurement the difference is only 0.00085 days, only 0.0002%.
34000TH of a Second to 4.32 Billion Years
India has given the idea of the smallest and the largest measure of time.
Krati Krati = 34,000th of a second
1 Truti = 300th of a second
2 Truti = 1 Luv

2 Luv = 1 Kshana
30 Kshana = 1 Vipal

60 Vipal = 1 Pal
60 Pal = 1 Ghadi (24 minutes)

2.5 Gadhi = 1 Hora (1 hour)
24 Hora = 1 Divas (1 day)

7 Divas = 1 saptaah (1 week)
4 Saptaah = 1 Maas (1 month)

2 Maas = 1 Rutu (1 season)
6 Rutu = 1 Varsh (1 year)

100 Varsh = 1 Shataabda (1 century)
10 Shataabda = 1 sahasraabda

432 Sahasraabda = 1 Yug (Kaliyug)
2 Yug = 1 Dwaaparyug

3 Yug = 1 Tretaayug
4 Yug = 1 Krutayug

10 Yug = 1 Mahaayug (4,320,000 years)
1000 Mahaayug = 1 Kalpa
1 Kalpa = 4.32 billion years

Plastic Surgery In India 2600 Years Old

Shushruta, known as the father of surgery, practised his skill as early as 600 BCE. He used cheek skin to perform plastic surgery to restore or reshape the nose, ears and lips with incredible results. Modern plastic surgery acknowledges his contributions by calling this method of rhinoplasty as the Indian method.

125 Types Of Surgical Instruments

"The Hindus (Indians) were so advanced in surgery that their instruments could cut a hair longitudinally".
MRS Plunket
Shushruta worked with 125 kinds of surgical instruments, which included scalpels, lancets, needles, catheters, rectal speculums, mostly conceived from jaws of animals and birds to obtain the necessary grips. He also defined various methods of stitching: the use of horse’s hair, fine thread, fibres of bark, goat’s guts and ant’s heads.
300 Different Operations
Shushruta describes the details of more than 300 operations and 42 surgical processes. In his compendium Shushruta Samhita he minutely classifies surgery into 8 types:
Aharyam = extracting solid bodies
Bhedyam = excision
Chhedyam = incision
Aeshyam = probing
Lekhyam = scarification
Vedhyam = puncturing
Visraavyam = evacuating fluids
Sivyam = suturing
The ancient Indians were also the first to perform amputation, caesarean surgery and cranial surgery. For rhinoplasty, Shushruta first measured the damaged nose, skilfully sliced off skin from the cheek and sutured the nose. He then placed medicated cotton pads to heal the operation.
India’s Contributions Acknowledged
"It is true that even across the Himalayan barrier India has sent to the west, such gifts as grammar and logic, philosophy and fables, hypnotism and chess, and above all numerals and the decimal system."
Will Durant (American Historian, 1885-1981)
"The Sanskrit language, whatever be its antiquity, is of wonderful structure, more perfect than the Greek, more copious than the Latin and more exquisitely refined than either".
Sir William Jones (British Orientalist, 1746-1794)
~If I were asked under what sky the human mind has most fully developed some of its choicest gifts, has most deeply pondered on the greatest problems of life, and has found solutions, I should point out to India".
Max Muller (German Scholar, 1823-1900


"There can no longer be any real doubt that both Islam and Christianity owe the foundations of both their mystical and their scientific achievements to Indian initiatives".
- Philip Rawson (British Orientalist)

Atomic Physics

"After the conversations about Indian philosophy, some of the ideas of Quantum Physics that had seemed so crazy suddenly made much more sense".
W. Heisenberg (German Physicist, 1901-1976)
"The surgery of the ancient Indian physicians was bold and skilful. A special branch of surgery was devoted to rhinoplasty or operations for improving deformed ears, noses and forming new ones, which European surgeons have now borrowed".
Sir W.Hunter (British Surgeon, 1718-1783)
"In the great books of India, an Empire spoke to us, nothing small or unworthy, but large, serene, consistent, the voice of an old intelligence which in another age and climate had pondered and thus disposed of the questions that exercises us".
- R.W.Emerson (American Essayist, 1803-1882)
Panini's grammar has been evaluated from various points of view. After all these different evaluations, I think that the grammar merits asserting ... that it is one of the greatest monuments of human intelligence.
- An evaluation of Panini's contribution by Cardona
Top  <To top of this page
Index Alphabetical   [Index to Pages]
Amazing Science (Part 4)
By J J O'Connor and E F Robertson

Grammar, Phonetics, Phonology, Morphology
Sanskrit was the classical literary language of the Indian
Hindus and Panini is considered the founder of the
language and literature.

Phonetics, Phonology, and Morphology

Article by: J J O'Connor and E F Robertson
School of Mathematics and Statistics
University of St Andrews, Scotland

Born: about 520 BC in Shalatula (near Attock),
now Pakistan Died: about 460 BC in India

Panini was born in Shalatula, a town near to Attock on the Indus river in present day Pakistan. The dates given for Panini are pure guesses. Experts give dates in the 4th, 5th, 6th and 7th century BC and there is also no agreement among historians about the extent of the work which he undertook. What is in little doubt is that, given the period in which he worked, he is one of the most innovative people in the whole development of knowledge. We will say a little more below about how historians have gone about trying to pinpoint the date when Panini lived.
Panini was a Sanskrit grammarian who gave a comprehensive and scientific theory of phonetics, phonology, and morphology. Sanskrit was the classical literary language of the Indian Hindus and Panini is considered the founder of the language and literature. It is interesting to note that the word "Sanskrit" means "complete" or "perfect" and it was thought of as the divine language, or language of the gods.
A treatise called Astadhyayi (or Astaka ) is Panini's major work. It consists of eight chapters, each subdivided into quarter chapters. In this work Panini distinguishes between the language of sacred texts and the usual language of communication. Panini gives formal production rules and definitions to describe Sanskrit grammar. Starting with about 1700 basic elements like nouns, verbs, vowels, consonants he put them into classes. The construction of sentences, compound nouns etc. is explained as ordered rules operating on underlying structures in a manner similar to modern theory. In many ways Panini's constructions are similar to the way that a mathematical function is defined today. Joseph writes in [2]:-
Sanskrit's potential for scientific use was greatly enhanced as a result of the thorough systemisation of its grammar by Panini. ... On the basis of just under 4000 sutras [rules expressed as aphorisms], he built virtually the whole structure of the Sanskrit language, whose general 'shape' hardly changed for the next two thousand years. ... An indirect consequence of Panini's efforts to increase the linguistic facility of Sanskrit soon became apparent in the character of scientific and mathematical literature.
Joseph goes on to make a convincing argument for the algebraic nature of Indian mathematics arising as a consequence of the structure of the Sanskrit language. In particular he suggests that algebraic reasoning, the Indian way of representing numbers by words, and ultimately the development of modern number systems in India, are linked Panini should be thought of as the forerunner of the modern formal language theory used to specify computer languages. The Backus Normal Form was discovered independently by John BACKUS in 1959, but Panini's notation is equivalent in its power to that of BACKUS and has many similar properties. It is remarkable to think that concepts which are fundamental to today's theoretical computer science should have their origin with an Indian genius around 2500 years ago.
At the beginning of this article we mentioned that certain concepts had been attributed to Panini by certain historians which others dispute. One such theory was put forward by B Indraji in 1876. He claimed that the Brahmi numerals developed out of using letters or syllables as numerals. Then he put the finishing touches to the theory by suggesting that Panini in the eighth century BC (earlier than most historians place Panini) was the first to come up with the idea of using letters of the alphabet to represent numbers.
There are a number of pieces of evidence to support Indraji's theory that the Brahmi numerals developed from letters or syllables. However it is not totally convincing since, to quote one example, the symbols for 1, 2 and 3 clearly don't come from letters but from one, two and three lines respectively. Even if one accepts the link between the numerals and the letters, making Panini the originator of this idea would seem to have no more behind it than knowing that Panini was one of the most innovative geniuses that world has known so it is not unreasonable to believe that he might have made this step too.
There are other works which are closely associated with the Astadhyayi which some historians attribute to Panini, others attribute to authors before Panini, others attribute to authors after Panini. This is an area where there are many theories but few, if any, hard facts.
We also promised to return to a discussion of Panini's dates. There has been no lack of work on this topic so the fact that there are theories which span several hundreds of years is not the result of lack of effort, rather an indication of the difficulty of the topic. The usual way to date such texts would be to examine which authors are referred to and which authors refer to the work. One can use this technique and see who Panini mentions.
There are ten scholars mentioned by Panini and we must assume from the context that these ten have all contributed to the study of Sanskrit grammar. This in itself, of course, indicates that Panini was not a solitary genius but, like Newton, had "stood on the shoulders of giants". Now Panini must have lived later than these ten but this is absolutely no help in providing dates since we have absolutely no knowledge of when any of these ten lived.
What other internal evidence is there to use? Well of course Panini uses many phrases to illustrate his grammar and these have been examined meticulously to see if anything is contained there to indicate a date. To give an example of what we mean: if we were to pick up a text which contained as an example "I take the train to work every day" we would know that it had to have been written after railways became common. Let us illustrate with two actual examples from the Astadhyayi which have been the subject of much study. The first is an attempt to see whether there is evidence of Greek influence. Would it be possible to find evidence which would mean that the text had to have been written after the conquests of Alexander the Great? There is a little evidence of Greek influence, but there was Greek influence on this north east part of the Indian subcontinent before the time of Alexander. Nothing conclusive has been identified.
Another angle is to examine a reference Panini makes to nuns. now some argue that these must be Buddhist nuns and therefore the work must have been written after Buddha. A nice argument but there is a counter argument which says that there were Jaina nuns before the time of Buddha and Panini's reference could equally well be to them. Again the evidence is inconclusive.
There are references by others to Panini. However it would appear that the Panini to whom most refer is a poet and although some argue that these are the same person, most historians agree that the linguist and the poet are two different people. Again this is inconclusive evidence.
Let us end with an evaluation of Panini's contribution by Cardona in [1]:-
Panini's grammar has been evaluated from various points of view. After all these different evaluations, I think that the grammar merits asserting ... that it is one of the greatest monuments of human intelligence.

 "Panini, famous grammarian of the Sanskrit language, lived in India some time between the 7th and the 4th centuries B.C. Following in the steps of the Brahmi alphabet makers, he became the most renowned of the grammarians. His work on Sanskrit, with its 4,168 rules, is outstanding for its highly systematic methods of analyzing and describing language.

The birth of linguistic science in Western Europe in the 19th century was due largely to the European discovery of Panini's Sanskrit grammar, making linguistics a science.
The modern science of linguistics is the basis for producing alphabets for languages yet unwritten today."

Panini's grammar (6th century BCE or earlier) provides 4,000 rules that describe the Sanskrit of his day completely. This grammar is acknowledged to be one of the greatest intellectual achievements of all time. The great variety of language mirrors, in many ways, the complexity of nature and, therefore, success in describing a language is as impressive as a complete theory of physics. It is remarkable that Panini set out to describe the entire grammar in terms of a finite number of rules. Scholars have shown that the grammar of Panini represents a universal grammatical and computing system. From this perspective it anticipates the logical framework of modern computers. One may speak of a Panini machine as a model for the most powerful computing system.

Panini was a Sanskrit grammarian who gave a comprehensive and scientific theory of phonetics, phonology, and morphology. Sanskrit was the classical literary language of the Indian Hindus.
In a treatise called Astadhyayi Panini distinguishes between the language of sacred texts and the usual language of communication. Panini gives formal production rules and definitions to describe Sanskrit grammar. The construction of sentences, compound nouns etc. is explained as ordered rules operating on underlying structures in a manner similar to modern theory.
Panini should be thought of as the forerunner of the modern formal language theory used to specify computer languages. The Backus Normal Form was discovered independently by John Backus in 1959, but Panini's notation is equivalent in its power to that of Backus and has many similar properties.
Amazing Science (Part 6)
The Kautiliya Arthasastra
Minerals and Metals and Ethnobiological Information
The Iron Pillar that Does Not Rust

The Kautiliya Arthasastra
Minerals and Metals and Ethnobiological
Information in Kautilya's Arthasastra
It is surprising that even in the I Millennium BC, they had
developed an elaborate terminology for different metals,
minerals and alloys. Brass (arakuta) was known, so also
steel (vrattu), bronze (kamsa), bell-metal (tala) was an
alloy of copper with arsenic, but tin-copper alloy was
known as trapu. A bewildering variety of jewellery was
also classified and given distinctive names.

Information and instructions about various other aspects
of social life, including man's relationship with animals
and plants.
Ethnobiological Information contained in the Arthasastra.
It deals with forests, plants, animals, animal husbandry
including veterinary suggestions, agriculture medicinal-
industrial commercial importance and application of flora
and fauna, and the uses of plants and animals in biological
and chemical warfare, besides weapon making and other
military uses.

The Kautiliya Arthasastra, a Sanskrit work of the c. 4th century B.C., is more known for its contents on politics and statecraft. But the book contains information and instructions about various other aspects of social life, including man's relationship with animals and plants. The present monograph of Prof. P. Sensarma is an excellent treatise in lucid English on the Ethnobiological Information contained in the Arthasastra. It deals with forests, plants, animals, animal husbandry including veterinary suggestions, agriculture medicinal-industrial commercial importance and application of flora and fauna, and the uses of plants and animals in biological and chemical warfare, besides weapon making and other military uses.
Minerals and Metals

Om Tat Sat

(My humble salutations to  Swamy Sri Sadasiva Teertha and professors    for the collection)


Post a Comment